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Overview
This work resorts to data augmentation and continual pre-training for
domain adaptation to improve cross-lingual abusive language detection.
For data augmentation, we analyze two existing techniques based on
vicinal risk minimization and propose MIXAG, a data augmentation
method that interpolates pairs of instances based on the angle between
their representations.
Contributions
• Dataset extension: We extend the multilingual dataset we used in

the experiments by including the corresponding Spanish dataset.
• Few-shot cross-lingual transfer learning improvement at

data-level: We rely on Vicinal Risk Minimization principle to
generate synthetic samples in the vicinity of the training samples to
increase the amount of information to fine-tune the model in the
target language.

• Unsupervised language adaptation: We simulate a fully
unsupervised setup, removing the label information from the target
languages. In this setting, we make a domain adaption for abusive
terms via masked language modeling in the target language before a
zero-shot transfer.

Vicinal Risk Minimization (VRM)
Data augmentation as an extension of the training set Dtrain = {(xi, yi)}
by drawing samples from a neighborhood of the existing samples [1].
The distribution p(x, y) is approximated by a vicinity distribution Dv =
{(x̂i, ŷi)}n

i=1, whose instances are a function of the instances of Dtrain.
Vicinal risk (Rv) is then calculated on Dv:

Rv = 1
n

n∑
i=1

l(f (x̂i), ŷi) (1)

Techniques in NLP
• SSMBA: Pair of functions (Corruption and Reconstruction)
• MIXUP: Constructs a synthetic example in the vicinity distribution

from the linear combination of examples.

Our technique: MIXAG
Constructs a synthetic example from the combination of instances with a
focus on the angle (α) between their representations.

x̂ = λxi + xj (2)
ŷ = λyi + yj (3)

Using the Law of Sines we express the linear combination coefficient (λ) as
a function of the cosine of α.

λ = ||xj ||(cos(θ)
√

1−cos(α)2−cos(α)
√

1−cos(θ)2)

||xi||
√

1−cos(θ)2
(4)

cos(α) = xixj

||xi||||xj|| (5)
θ is a parameter.

Experiments
Dataset: XHate-999 [2]: Several variants of abusive language detection.

• 3 domains: Fox News (GAO), Twitter/Facebook (TRAC), and
Wikipedia (WUL).

• Texts in English for training, validation, and testing.
• Test instances in 5 target languages: Albanian (SQ), Croatian (HR),

German (DE), Russian (RU), and Turkish (TR). We extended with
test instances in Spanish (ES).

Model: mBERT
Fine-tuning and Evaluation Details: For each language
• Zero-shot experiments: 90% of the test set to evaluate.
• Few-shot experiments: 10% of the test set to fine-tune the model and

90% of the test set to evaluate.
• Unsupervised language adaptation: Two-step methodology:

• 1. continual pre-training for domain adaptation via masked language modeling.
• 2. zero-shot learning to detect abusive language.

Variants: ZS: Zero-shot, FS: Zero-shot, SS: SSMBA, SS-HL: SSMBA
with HurtLex, MU: MIXUP, MMU: multilingual MIXUP, MU-SS:
MIXUP with SSMBA, MA: MIXAG, MMA: multilingual MIXAG,
MA-SS: MIXAG with SSMBA, ZS_MLM: language adaptation

Results
The results are reported in terms of F1 and significantly better results are
underlined for each language and domain (α = .05). Numbers in bold
indicate the best results.
Multidomain results

Results in language adaptation

Findings
• VRM-based techniques improve few-shot cross-lingual transfer.
• In results by domain: Unclear difference between the performance of

VRM-based techniques.
• In multidomain experiments: Multilingual MIXAG outperforms the other

strategies.
• Domain adaptation can improve zero-shot cross-lingual transfer, but

few-shot cross-lingual transfer with VRM-based techniques seems to be
more robust.
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