How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions

Goran Glavaš¹, Robert Litschko¹, Sebastian Ruder², Ivan Vulić³

- ¹ Data & Web Science Group, University of Mannheim
- ² Insight Research Centre, National University of Ireland (now at DeepMind)
- ³ PolyAl Ltd.

MOTIVATION

PROJECTIONS

MODELS

Cross-Lingual Word Embeddings

- ☐ Cross-lingual word embeddings (CLWEs) conceptually allow for a **cheap language transfer** of NLP models
- ☐ Compared to full-blown MT, resource-light approach for bridging the language chasm in NLP applications
- ☐ While early CLWE models required parallel or comparable corpora, SOTA projection-based CLWE models require only limited word-level supervision or no supervision

CLWE Evaluation

- ☐ Last few years have seen only **word-translation based** (bilingual lexicon induction, BLI) evaluation of induced CLWEs
- ☐ BLI is **NOT** why we induce CLWEs for: we use them primarily for CL transfer of NLP models; BLI evaluations vary greatly
- ☐ Unsupervised CLWE induction models are hot: no bilingual supervision needed, reported to (unintuitively) outperform supervised counterparts

1. Is BLI performance a good indicator of the quality of a CLWE space?

2. Are unsupervised CLWE induction models really better than supervised?

- ☐ Initial seed dictionary D of word translations is given (supervised) or induced (unsupervised)
- \square X_s and X_T : matrices with vectors of aligned words from the training dictionary D
- Solution by solving the Procrustes problem: $\mathbf{W}_{11} = \mathbf{U}\mathbf{V}^{\mathsf{T}}$ where $\mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}} = \mathsf{SVD}(\mathbf{X}_{\mathsf{T}}\mathbf{X}_{\mathsf{S}}^{\mathsf{T}})$

☐ Supervised models:

- ☐ CCA (Faruqui & Dyer, EACL 14); Simple Procrustes (Smith et al., ICLR 17); Bootstrapped Procustres (from smaller dicts; our contribution)
- Discriminative Lat.-Var. Model (Ruder et al., EMNLP 18); Relaxed CSLS (Joulin et al., EMNLP 18) with BLI-specialized objective/loss function

☐ Unsupervised models:

- ☐ MUSE (Conneau et al, ICLR 18); VecMap (Artetxe et al., ACL 18)
- ☐ Gromov-Wasserstein Alignment (Alvarez.Melis & Jaakkola, EMNLP 18); Iterative Closest Point (Hoshen & Wolf, EMNLP 18)

☐ Standardized BLI evaluation

- ☐ Same test sets (and same training sets for supervised models)
- □ 8 languages, yielding 28 language pairs for evaluation: EN & DE (Germanic), IT & FR (Romance), RU & HR (Slavic), FI & TR (non-Indo-European, agglutinative)

□ Downstream evaluations

3 tasks: (1) CL document retrieval (CLIR) and CL transfer for (2) natural language inference (XNLI) and (3) document classification (CLDC)

Model	BLI (MAP / successful LPs)	XNLI (accuracy)	CLDC (micro avg. F ₁)	CLIR (MAP)
Procrustes (train dict. 1K)	.299 (28)	.536	.190	.133
Procrustes (train dict. 5K)	.405 (28)	.574	.267	.196
Bootstrapped Proc. (train dict. 1K)	.379 (28)	.579	.251	.216
DLV (train dict. 5K)	.403 (28)	.571	.258	.197
RCSLS (train dict 5K)	.437 (28)	.385	.510	.162
VecMap (unsup.)	.375 (28)	.581	.405	.155
MUSE (unsup.)	.183 (<mark>13</mark>)	.467	.240	.107
Iterative Closest Point (unsup.)	.253 (22)	.516	.348	.182
Gromov-Wasserstein (unsup.)	.137 (15)	.386	.184	.072

- ☐ RCSLS, tuned for BLI, is the most peculiar:
 - ☐ Best on BLI & CLDC, mediocre on CLIR and bad for NLI transfer
 - ☐ Overfitting for BLI may severely hurt downstream performance
- ☐ BLI results do not necessarily correlate with downstream results

Correlation w. BLI results	XNLI	CLDC	CLIR
All models	.269	.390	.764
All without RCSLS	.951	.266	.910

TAKEAWAY

- 1. BLI performance alone is not enough to judge the quality and usefulness of induced CLWE spaces
- 2. BLI must be coupled with a set of diverse downstream CL applications
- 3. Unsupervised CLWE induction methods do not outperform supervised counterparts

