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— S S— 1. Current methods of cross-lingual parser transfer focus on predicting

90 | HEE instance-based the best parser gIobaIIy (SihQ'G-SOUTCG)

2. Observation: Different source parsers are the best choice for

different target sentences

3. We propose a novel cross-lingual transfer paradigm: instance-level
parser selection (instance-based)

. Proof of concept: Delexicalized Parser Transfer, assumed gold
UPOS [1] tags (42 Train and 20 unseen Test languages)
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[2] Lin et al. 2019. Choosing transfer languages for cross-lingual learning. In Proceedings
of ACL, pages 3125-3135.
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Fig 1: Theoretical performance gains from single-source to instance-based parser selection on 20 unseen test languages. transter. In Proceedings of ACL, pages 243-2409.
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e Instance-Level Parser Selection (ILPS): Predict single strongest
parser and decode sequence

e [reebank-level parser transfer: Aggregate individual predictions into
Single Best Parser Selection Selection (SBPS; p)
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Baselines

e Multi-source Parser (MSP): train one parser model on
concatenation of all training treebanks

4t b A — Parse tree matrix G .

{ | ] R S 4 "\ G _ab = aggregated votes

{ for word b being the head

Probing vector § s o I WO E R ﬁ
y | = predicted fitness of parser j on e

current sentence.

e [reebank-level parser selection based on...
...cosine similarity between syntax vectors (1.2V-SBPS) [2]
...Kullback-Leibler divergence (KL.-SBPS) between UPOS
trigram distributions [3]
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Methodology & Baselines

Fig. 2: ILPS Framework: (1) Probing: ILPS model predicts parser accuracies; (2) Ranking: Rank parsers w.r.t. predicted accuracy and

select top k parsers; (3) Reparsing: Induce final tree by merging individual trees produced by two or more parsers e Ensembles (ENS-X): Reparsing, i.e., select more than one parser
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50.0 e Both ensembles (ENS-ILPS, ENS-SBPS ; p ) outperform

A .

=6 S

05 RIS R o oracle baseline using all parsers

A \° \P° \9°

\}\l

o single parser oracle baseline
Fig. 3: Single-parser selection results (left) and ensemble results (right) in terms of Unlabeled Assignment Score, AVG over 20 test languages e There are still large potentials w.r.t. best possible result


mailto:litschko@informatik.uni-mannheim.de

