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Cross-Lingual IR vs. Cross-Lingual Transfer
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Problem Statement

[CLS]   Query  [SEP]  Doc  [SEP]

s

Cross-Encoder: MonoBERT*
Transferring MonoBERT to new languages

● Maintain one model each language pair.
○ Space inefficient
○ Impossible without large scale training data. 

● Alternative: Multilingual encoder.

● Curse of Multilinguality (Conneau et al., ACL'20). Model 
capacity restricts the number of languages that can 
practically be encoded with a multilingual LM.

● Catastrophic Forgetting (Mirzadeh et al., NeurIPS'20). 
Training MonoBERT on EN-EN might overwrite features 
important for other languages.

*Nogueira et al. (2019)



Outline

1. Introduction

2. Parameter-Efficient Reranking
a. Adapters 

b. Sparse Fine-Tuning Masks

3. Experimental Setup

4. Results

5. Conclusion

5



Adapters



Adapters

Image based on: “Parameter-Efficient Transfer Learning for NLP” Houlsby et al. (2019) 6
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● Bottleneck Adapters proposed by (Houlsby et al., ICML'19).

● Instead of training the full model, inject and train adapter modules.

● Parameter-Efficient – Keep rest of the model frozen during training.

● MAD-X (Pfeiffer et al.,  EMNLP'19): Adapters encode task-specific kowledge, 
stacking adapters enables multi-task cross-lingual transfer.
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s
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Adapters for CLIR
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Composing Rerankers
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Sparse Fine-Tuning Masks (SFTMs)



Lottery Ticket Hypothesis
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“A randomly-initialized, dense neural network contains a subsetwork 
that is initialized such that – when trained in isolation – it can match the 
test accuracy of the original network after training for at most the same 
number of iterations.”

- Frankle & Carbin (ICLR'19)



Sparse Fine-Tuning Masks (Ansell et al., ACL'21)

Illustration inspired by: “The Lottery Ticket Hypothesis: A Survey” Robert Tjarko Lange (2020) 11
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Training SFTMs

● Find “Winning lottery ticket” – Train pretrained LM (PLM) on a 
task and extract subnetwork with top k largest weight changes.

● Sparse Fine-Tuning – Reset weights and restart training, 
keeping all weights except for subnetwork frozen. 

● SFTM is obtained as difference vector on subnetwork

reset weights, restart training

Sparsity ≈ Reduction Factor (Adapters)



b) Sparse task 
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a) Sparse language 
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Sparse Fine-Tuning Masks for CLIR*

*Following Ansell et al. (ACL'21), **(Devlin et al., NAACL’19) 12



H

Composing Rerankers
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Ranking Mask (RM) — Query Language Mask (LM) — Document Language Mask (LM)

13



Outline

1. Introduction

2. Parameter-Efficient Reranking

3. Experimental Setup
a. Evaluation Datasets

b. Baselines

4. Results

5. Conclusion

14



Evaluation Datasets

15
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Google 

Translate

Post-Editing

*We use Swahili (SW) and Somali (SO) query translations from Bonab et al. (CIKM'19)

KG

UG

SW*

SO*

TR

CLIR CLIRMoIR

MoIR

CLEF-2003

CLEF-2003 HC4
● We train ranking models on MS-MARCO (Craswell et al., SIGIR'21).

● We evaluate ranking models on 29 language pairs from:

○ CLEF 2003 (Braschler, LNCS'03) 

○ HC4 (Lawrie et al., ECIR'22)

● All models rerank the top-100 documents. 

● In addition to existing CLEF languages we release three new CLEF query 
languages: Turkish (TR), Kyrgyz (KG), Uyghur (UG).
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Baselines

NMT→BM25 (PR)

● Query Translation with SOTA NMT models (Fan et al., JML'21; Mirzakhalov, EMNLP'21).

● Retrieve documents with BM25 (Monolingual Lexical Retrieval).

                             (PR)

● Multilingual encoder trained with Knowledge DISTILation (Reimers et al., EMNLP'20).

● Bi-Encoder: Encode query and document independendly, compute relevance score as cosine 
similarity between representations.

MonoBERT

● Full fine-tuning: mBERT-based ranking model (Nogueira et al., arxiv'19) trained on MS-MARCO.

● Zero-shot reranking with Cross-Encoders (MacAvaney et al., ECIR'20).

Cosine

NMT → BM25

Query Document

Query Document

Document

MonoBERT

Query

PR = Preranker
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CLIR Results on CLEF 2003

18*Except for EN-RU   **Adaptes and SFTMs have reduction factors of 16 and 2, respectively (see paper for ablation).

Preranker (PR): Bi-Encoder

● MonoBERT trained on MS-MARCO (EN-EN) improves preranker results on all languages pairs involving English*, mixed 
results on other language pairs.

● Ensembling preranker and reranker (average rank) improves retrieval results.

● Both Adapters** and SFTMs** improve over baselines while training with fewer parameters. 

Adapters

SFTMs

Mean Average Precision (MAP)



CLIR Results on extended CLEF and HC4
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Preranker (PR): NMT+BM25*

● NMT casts CLIR into a noisy variant of MoIR. Both Adapters and SFTMs improve over baselines.

● Results on low-resource and distant languages generally lower than results on high-resource languages.

● But: Gains are less pronounced when preranker/MonoBERT results are low.

Mean Average Precision (MAP)

*                                     does not support languages used here.

We found low results to be related to NMT quality!



Impact of NMT on CLIR
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● Topic shifts: sports vs. business

● “Hallucinations”: queries consisting of unrelated text and repetitions*

● Copy source words: Nugleerka (Nuclear), Jarmalka (Germany)

● Slight lexical and Semantic variations: flooding vs. floods, holland vs. netherlands

*Filtering out queries that contain more than two repetitions improves from 0.157 to 0.280 MAP (MonoBERT)
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Conclusion
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More results in our paper:

● Monolingual IR (MoIR) results on high- and low-resource languages.

● Parameter Efficiency – Ablation of different levels of sparsity (reduction factor).

● AdapterDrop (Rücklé et al., EMNLP'21) – Speed vs. effectiveness, drop Adapters in lower layers.

In this work we …
… introduced modular and parameter-efficient neural rerankers for effective cross-lingual transfer.

… demonstrate the effectiveness of Adapters and SFTMs for Cross-Lingual IR.

… released three new CLEF query languages to encourage research on low-resource CLIR.

github.com/rlitschk/ModularCLIR robert.litschko@uni-mannheim.de @

https://github.com/rlitschk/ModularCLIR
mailto:robert.litschko@uni-mannheim.de

