Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval

Robert Litschko¹, Ivan Vulić², Goran Glavaš^{1, 3}

¹Data and Web Science Group, University of Mannheim, Germany ²Language Technology Lab, University of Cambridge, UK ³Center for AI and Data Science (CAIDAS), University of Würzburg, Germany

COL NG 2022

- 1. Introduction
- 2. Parameter-Efficient Reranking
- 3. Experimental Setup
- 4. Results
- 5. Conclusion

1. Introduction

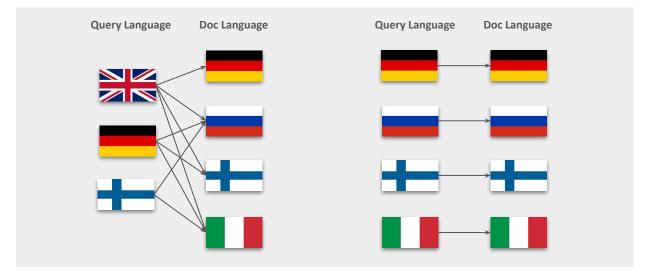
a. Cross-Lingual IR vs. Cross-Lingual Transfer

1

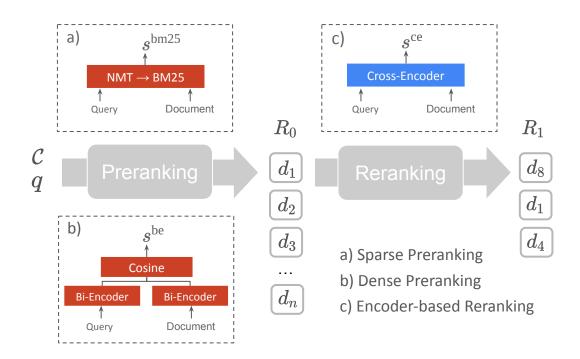
- b. Multi-Stage Ranking
- c. Problem Statement
- 2. Parameter-Efficient Reranking
- 3. Experimental Setup
- 4. Results
- 5. Conclusion

Cross-Lingual IR vs. Cross-Lingual Transfer

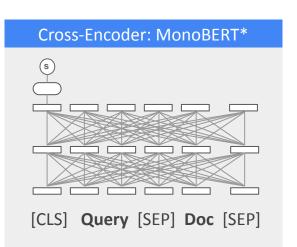
Cross-Lingual Information Retrieval (CLIR) Cross-Lingual Transfer for Monolingual IR (MoIR)



Cross-Lingual Multi-Stage Ranking



Problem Statement



Transferring MonoBERT to new languages

- Maintain one model each language pair.
 - Space inefficient
 - Impossible without large scale training data.
- Alternative: Multilingual encoder.
- **Curse of Multilinguality** (Conneau et al., ACL'20). Model capacity restricts the number of languages that can practically be encoded with a multilingual LM.
- **Catastrophic Forgetting** (Mirzadeh et al., NeurIPS'20). Training MonoBERT on EN-EN might overwrite features important for other languages.

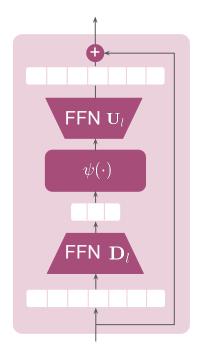
1. Introduction

2. Parameter-Efficient Reranking

- a. Adapters
- b. Sparse Fine-Tuning Masks
- 3. Experimental Setup
- 4. Results
- 5. Conclusion

Adapters

Adapters

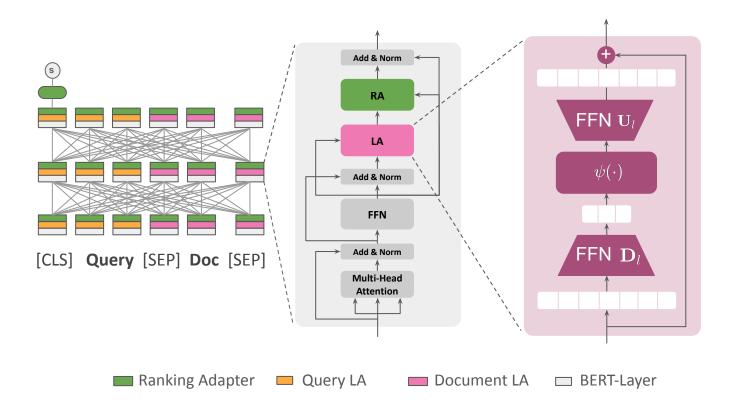


- Bottleneck Adapters proposed by (Houlsby et al., ICML'19).
- Instead of training the full model, inject and train adapter modules.
- Parameter-Efficient Keep rest of the model frozen during training.
- MAD-X (Pfeiffer et al., EMNLP'19): Adapters encode task-specific kowledge, stacking adapters enables multi-task cross-lingual transfer.

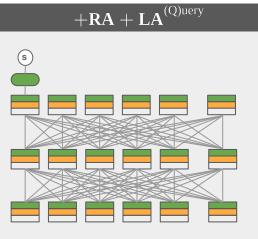
 $Adapter(h_l, r_l) = \mathbf{U}_l(\psi(D_l(h_l)) + r_l)$

Reduction Factor = $\frac{dim(h_l)}{dim(D_l(h_l))}$

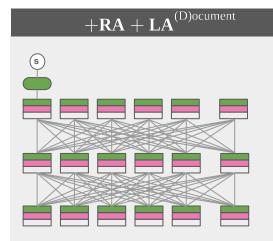
Adapters for CLIR



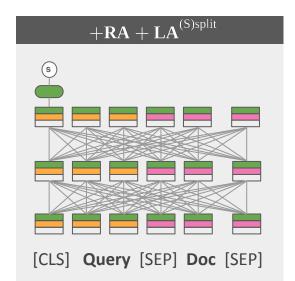
Composing Rerankers



[CLS] Query [SEP] Doc [SEP]



[CLS] Query [SEP] Doc [SEP]



Document LA

BERT-Layer

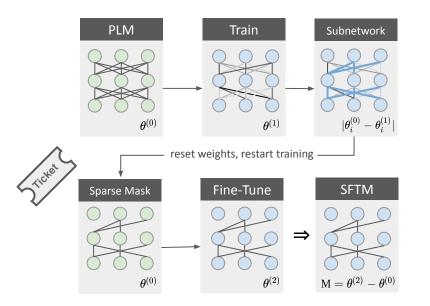
Sparse Fine-Tuning Masks (SFTMs)

Lottery Ticket Hypothesis

"A randomly-initialized, dense neural network contains a **subsetwork that is initialized such that** – when trained in isolation – **it can match the test accuracy of the original network** after training for at most the same number of iterations."

- Frankle & Carbin (ICLR'19)

Sparse Fine-Tuning Masks (Ansell et al., ACL'21)

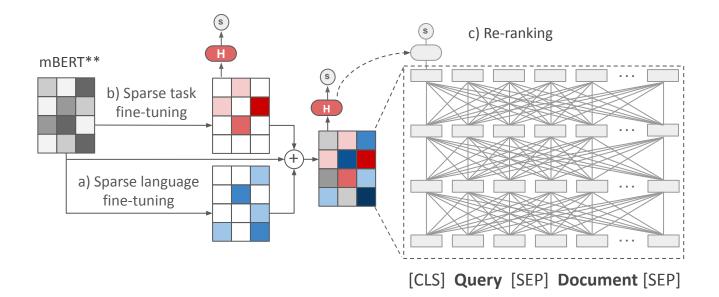


Training SFTMs

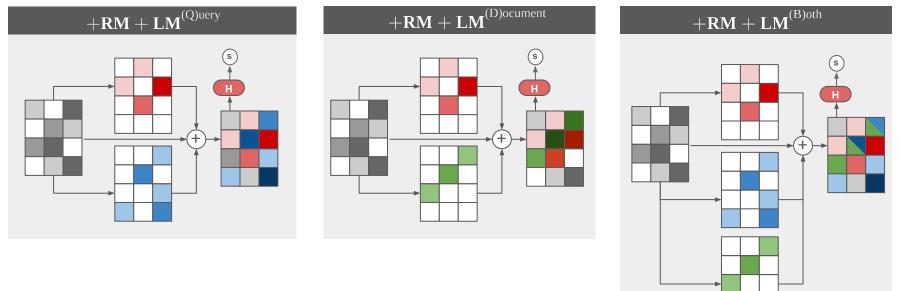
- Find "Winning lottery ticket" Train pretrained LM (PLM) on a task and extract subnetwork with top k largest weight changes.
- **Sparse Fine-Tuning** Reset weights and restart training, keeping all weights except for subnetwork frozen.
- SFTM is obtained as difference vector on subnetwork

Sparsity ≈ Reduction Factor (Adapters)

Sparse Fine-Tuning Masks for CLIR*



Composing Rerankers



Ranking Mask (RM) — Query Language Mask (LM) — Document Language Mask (LM)

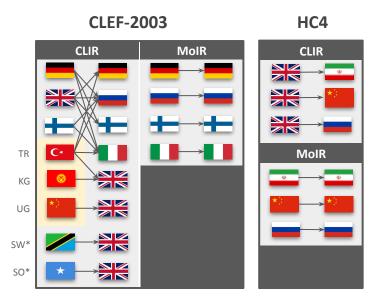
- 1. Introduction
- 2. Parameter-Efficient Reranking

3. Experimental Setup

- a. Evaluation Datasets
- b. Baselines
- 4. Results
- 5. Conclusion

Evaluation Datasets

- We train ranking models on MS-MARCO (Craswell et al., SIGIR'21).
- We evaluate ranking models on 29 language pairs from:
 - CLEF 2003 (Braschler, LNCS'03)
 - HC4 (Lawrie et al., ECIR'22)
- All models **rerank** the top-100 documents.
- In addition to existing CLEF languages we release three new CLEF query languages: Turkish (TR), Kyrgyz (KG), Uyghur (UG).



Baselines

NMT→BM25 (PR)

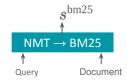
- Query Translation with SOTA NMT models (Fan et al., JML'21; Mirzakhalov, EMNLP'21).
- Retrieve documents with BM25 (Monolingual Lexical Retrieval).

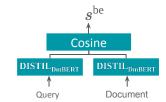
DISTIL_{DmBERT} (PR)

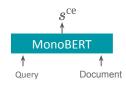
- Multilingual encoder trained with Knowledge DISTILation (Reimers et al., EMNLP'20).
- **Bi-Encoder**: Encode query and document independendly, compute relevance score as cosine similarity between representations.

MonoBERT

- Full fine-tuning: mBERT-based ranking model (Nogueira et al., arxiv'19) trained on MS-MARCO.
- Zero-shot reranking with Cross-Encoders (MacAvaney et al., ECIR'20).







- 1. Introduction
- 2. Parameter-Efficient Reranking
- 3. Experimental Setup

4. Results

- a. CLIR results on CLEF 2003
- b. CLIR results on extended CLEF and HC4
- c. Impact of NMT on CLIR
- 5. Conclusion

CLIR Results on CLEF 2003

	Model	TR-EN	TR-IT	TR-DE	TR-FI	TR-RU	EN-FI	EN-IT	EN-RU	EN-DE	DE-FI	DE-IT	DE-RU	FI-IT	FI-RU	AVG	ENS
	DISTIL _{DmBERT} (PR) MonoBERT	.183 .235	.251 .197	.190 .208	.252 .285	.260 .217	.294 .339	.290 .315	.313 .248	.247 .295	.300 .329	.267 .270	.284 .246	.221 .197	.302 .174		- .274
Adapters	$+RA + LA^{S} +RA + LA^{D} +RA + LA^{Q}$.269 .252 .270	.253 .234 .243	.252* .222 .242	.362 .267 .293	.186 .267 .191	.363 .366* .370	0.0050.050.050		.317* .314* .318		.300 .302 .279	.223 .315 .223	.266 .220 .247		.277 .283 .266	.298
SFTMs	$\begin{array}{c} +RM + LM^{B} \\ +RM + LM^{D} \\ +RM + LM^{Q} \end{array}$.229 .231 .239	.228 .226 .252	.229		.149*				.320*	.376	.304	.191* .187 .195	.239	.166*	.262	.=0>

Mean Average Precision (MAP)

Preranker (PR): Bi-Encoder

- MonoBERT trained on MS-MARCO (EN-EN) improves preranker results on all languages pairs involving English*, mixed results on other language pairs.
- Ensembling preranker and reranker (average rank) improves retrieval results.
- Both Adapters** and SFTMs** improve over baselines while training with fewer parameters.

CLIR Results on extended CLEF and HC4

	CLEF 2003			13					
Model	SW-EN	SO-EN	KG-EN	UG-EN	EN-FA	EN-ZH	EN-RU	AVG	ENS
NMT+BM25 (PR)	.325	.157	.228	.091	.183	.113	.186	.183	.216
MonoBERT	.362	.158	.255	.157	.246	.172	.218	.224	
$\begin{array}{l} + RA + LA^{D} \\ + RM + LM^{D} \end{array}$.407	.166	.305	.155	.259	.189	.234	.245	.228
	.389	.161	.311	.165	.267	.196	.241	.247	.225

Mean Average Precision (MAP)

Preranker (PR): NMT+BM25*

- NMT casts CLIR into a noisy variant of MoIR. Both Adapters and SFTMs improve over baselines.
- Results on low-resource and distant languages generally lower than results on high-resource languages.
- But: Gains are less pronounced when preranker/MonoBERT results are low.

We found low results to be related to NMT quality!

Impact of NMT on CLIR

QID	English Query (original)	NMT: Swahili \rightarrow English	NMT: Somali \rightarrow English		
151	Wonders of Ancient World Look for information on the existence and/or the discovery of remains of the seven wonders of the ancient world .	Search for information about the existence and/or development of the seventh universe of the ancient world .	Thus, therefore, it is necessary to bear in mind that the truth is the truth, and that the truth is the truth, and that the truth is the truth.		
172	1995 Athletics World Records What new world records were achieved during the 1995 athletic world championships in Gothen- burg ?	What new world records were recorded at the 1995 World Horses in Gothenburg ?	The 1995 World Trade Organiza- tion (WTO) announced that a new international trade agreement has led to a global trade agreement in Gothenburg .		
187	Nuclear Transport in Germany Find reports on the protests against the transportation of radioactive waste with Castor containers in Germany.	Nuclear Delivery in Germany A report on the anti-trafficking of ra- dioactive pollutants and Castor containers in Germany.	The Nugleerka department of Jar- malka Hel has been prepared for the development of the Nugleerka de- partment of Castor district in Jar- malka.		
200	Flooding in Holland and Germany Find statistics on flood disasters in Holland and Germany in 1995.	The floods in the Netherlands and Germany have recorded the floods in the Netherlands and Germany in 1995.	The Netherlands Federation and the United Nations have agreed with the Netherlands Federation and the Netherlands Federation in 1995 .		

- Topic shifts: sports vs. business
- "Hallucinations": queries consisting of unrelated text and repetitions*
- Copy source words: Nugleerka (Nuclear), Jarmalka (Germany)
- Slight lexical and Semantic variations: flooding vs. floods, holland vs. netherlands

- 1. Introduction
- 2. Parameter-Efficient Reranking
- 3. Experimental Setup
- 4. Results
- 5. Conclusion

Conclusion

In this work we ...

- ... introduced **modular** and **parameter-efficient** neural rerankers for effective cross-lingual transfer.
- ... demonstrate the effectiveness of Adapters and SFTMs for Cross-Lingual IR.
- ... released three new CLEF query languages to encourage research on low-resource CLIR.

More results in our paper:

- Monolingual IR (MoIR) results on high- and low-resource languages.
- Parameter Efficiency Ablation of different levels of sparsity (reduction factor).
- AdapterDrop (Rücklé et al., EMNLP'21) Speed vs. effectiveness, drop Adapters in lower layers.

